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We study theoretically the magnetic screening properties of thin, diffusive superconductor/ferromagnet
bilayers subject to a perpendicular magnetic field. We find that the effective penetration depth characterizing
the magnetic response oscillates with the thickness of the ferromagnetic layer on the scale of the ferromagnetic
coherence length.

DOI: 10.1103/PhysRevB.80.012505 PACS number�s�: 74.78.Fk, 74.25.Ha, 74.25.Nf, 74.45.�c

While superconductor-normal metal �SN� structures have
been intensively studied for decades, superconductor-
ferromagnet �SF� structures have only become accessible re-
cently because of the much-reduced length scales in ferro-
magnets. Due to their incompatible spin properties, the
proximity effect between a singlet superconductor and a fer-
romagnet leads to a variety of unusual phenomena.1,2

Through the exchange field acting on the electron spins in
the ferromagnet, Cooper pairs acquire a finite-momentum �k
which leads to an oscillatory behavior of the anomalous
Green’s function.3 Observable consequences are, e.g., a non-
monotonic dependence of the transition temperature4–6 and
the density of states at the Fermi level7,8 on the thickness of
the F layer in SF bilayers, and the possibility of �-Josephson
junctions at certain thicknesses of the F layer in
superconductor-ferromagnet-superconductor �SFS�
trilayers.9–11

While most experiments on hybrid systems use resistive
measurements, screening of an external magnetic field offers
an alternative tool to study the proximity effect. These mea-
surements probe deeply into the superconducting state be-
cause they provide both the magnitude and temperature de-
pendence of the effective superfluid density. Various
configurations for the magnetic response can be considered.
The magnetization of SN hybrids with a magnetic field ap-
plied parallel to their interface has been addressed theoreti-
cally in Ref. 12, with still debated experimental results in the
case of SN cylinders.13,14 Alternatively, the screening prop-
erties of thin films can be probed by measuring the mutual
inductance of two coils positioned on opposite sides of the
sample.15,16 The mutual inductance can be related to the
complex conductivity of the film which in turn can be related
to the screening-length � or the superfluid-density �S. To be
precise, in SF bilayers, one measures the superfluid-density
�S��−2 integrated over the width of the bilayer or an effec-
tive screening-length

�eff
−2 = dS

−1�
−dS

dF

dx�−2�x� , �1�

where dS and dF are the thicknesses of the superconducting
and ferromagnetic layer, respectively, and x is the coordinate
normal to the interface. First experimental results on Nb/Ni
bilayers have been reported using this setup in Ref. 17,

where a nonmonotonic dependence of the effective
screening-length on the thickness of the Ni layer has been
observed.

In this Brief Report, we study the screening-length �eff of
a SF bilayer subject to a weak perpendicular magnetic field.
The main assumptions are that (i) the exchange-field h in the
ferromagnet is much larger than the superconducting order-
parameter �, (ii) the system is in the dirty limit and, thus, the
Usadel equation18 can be used, (iii) the screening-length �eff
is much larger than the thickness d=dS+dF of the bilayer,
and (iv) the width dS of the superconducting �S� layer is
smaller than the superconducting coherence-length �S

=�DS / �2�Tc0�, where DS is the diffusion constant and Tc0 is
the transition temperature of the bare S layer. Our main result
is that the screening length displays an oscillatory behavior
with the thickness of the ferromagnet.

Due to the normalization-condition ĝ2=1 of the quasiclas-
sical Usadel Green’s-function ĝ, it can be parametrized by an
angle 	 such that the normal Green’s-function G=cos 	
whereas the anomalous Green’s-function F=sin 	. The sys-
tem is then described by four coupled equations in terms of
the angles 	S on the S side of the SF interface, 	0 on the
ferromagnetic �F� side of the SF interface, and 	F at the
ferromagnet-vacuum interface.

The Usadel equation of the F layer, −DF�2	+2ih sin 	
=0, can be integrated to yield

2�iy = �
	F

	0

d	
1

�cos 	F − cos 	
, �2�

where y=dF /�F and �F=�DF /h is the ferromagnetic coher-
ence length, with the diffusion-constant DF of the F layer.
The boundary condition imposing current conservation at the
SF interface19 can be expressed as

sin�	S − 	0� = 2�i
�cos 	F − cos 	0, �3�

where 
=Rb�F /�F. Here Rb is the interface resistance per
square, and �F is the conductivity of the F layer. In the limit
dS��S, the Usadel equation of the S layer, −DS�

2	
+2
 sin 	=2� cos 	, where 
 is a fermionic Matsubara fre-
quency, can be simplified by an expansion in small spatial
variations of the angle 	 across the S layer combined with
the boundary condition �3�. One obtains
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 sin 	S + 2�i��cos 	F − cos 	0 = � cos 	S, �4�

where �=DS�F / �2�SdS�F� and �S is the conductivity of the
S layer. Finally, the self-consistency equation for the order-
parameter � reads

� = �T�BCSR��



sin 	S� , �5�

where �BCS is the Bardeen-Cooper-Schrieffer coupling con-
stant.

In diffusive superconductors, the screening length � de-
scribes the local �London� current response20 to a vector po-
tential, j=−1 / ��0�2�A, where �−2= �2�T�0�S /���
F2 is
proportional to the superfluid density. Here �0 is the vacuum
permeability. In SF bilayers, the effective screening length is
related to the angles 	 through the equation

1

�eff
2 =

2�T�0�S

�
R��



�sin2 	S + ��

0

y

dx sin2 	�x�	� ,

�6�

where �=�F�F / ��SdS�. Using the Usadel equation of the F
layer, the integral over x can be traded for an integral over 	,
namely dx= 1

2�i
�cos 	F−cos 	�−1/2d	, ranging from 	F to 	0.

In general the set of Eqs. �2�–�5� can be solved numeri-
cally only, but in some limiting cases an analytical solution is
possible. At T=0, a simplification occurs because the sums
over 
 can be replaced by integrals, and subsequently the
integration over 
 can be traded for an integration over 	S
using the Usadel equation.21 It is then sufficient to solve the
Usadel equation at 
=0 for 	S�0�. In particular, using Eqs.
�2� and �3�, the Usadel equation of the S layer �4� can be
brought into the form 

+F�	S��sin 	S=� cos 	S, yielding
d
=−�� /sin2 	S+F��	S��d	S. Using this trick, the zero-
temperature gap � is given as

ln
�

�0
= R�ln tan

	S�0�
2

+ �
0

	S�0�

d	SF��	S�sin 	S� , �7�

where �0 is the zero-temperature gap of the bare S layer, a
result which can then be used to compute �eff

−2.
In the following, we provide analytical results for the ef-

fective screening length in two limits, namely �i� for a sys-
tem without barrier 
=0 and (ii) for a system with a strong
barrier 
�1. In both cases, solutions are presented for small
parameters �. For convenience, we introduce the notation x̃
= �1+ i�x for x=� ,
 ,y.

In the absence of a barrier 
=0, the boundary condition
�3� imposes that the angles on both sides of the SF interface,
	0 and 	S, are the same.

If dF��F, the angle 	F is small, and Eq. �2� yields 	F

=8 tan
	S

4 exp
−ỹ�. Thus, we can simplify Eq. �4� to yield


 sin 	S + 2�̃ sin
	S

2 �1 − 8e−2ỹ

tan2	S

4

sin2	S

2

 = � cos 	S. �8�

Treating ���0 perturbatively, one finds 	S�0�= �
2 +�	S,

where �	S=−�2��̃ /�0�
1−16e−2ỹ�3−2�2��, and

�� = − 2�
�2 − ln�1 + �2��

−
16

3
R
�̃e−2ỹ�
3 ln�1 + �2� + 4 − 5�2� . �9�

This solution describes gapless superconductivity with a fi-
nite density-of-states ��0� at the Fermi level in the supercon-
ductor that oscillates with the thickness of the ferromagnet:
��0�=−�0R
�	S�, where �0 is the density of states in normal
state. The equation for the screening length takes the form

�0
2

�eff
2 �0�

= 1 − �a1 − a2�cos 2y + sin 2y�e−2y�
�

�0

+
2�2

3�
��1 + a3ye−2y cos 2y − a4

�

�0
	 , �10�

where �0
−2=��0�S�0 /� is the inverse screening length of the

bare S layer at zero temperature, and the coefficients ai are
positive.22 Both the contributions to the effective screening
length from the S layer and from the F layer ���� oscillate
on the length scale of the ferromagnetic coherence length.

If, on the other hand dF��F, the variation of the angle 	
is small across the F layer and, thus, 	S−	F�1. Using Eq.
�2�, one obtains 	S=	F cosh ỹ. Inserting this relation into the
Usadel equation of the S layer results in

�
 + 2i�y +
4

3
�y3 cos 	S	sin 	S = � cos 	S. �11�

We find �	S=−2i�y /�0 and ��=− �
3 �y3. Note that because

	S�0�= �
2 + i�, where � real, the density of states possesses a

gap in this regime. Using Eq. �11� to convert the integral
over 
 to an integral over 	S, the screening length is given by

�0
2

�eff
2 �0�

= 1 −
�

3
�1 +

16

3�2	 �

�0
y3 + �y . �12�

Equation �12� predicts an increase in �eff
−2 as long as dF

��F
2 /�S before it starts to decrease. The regime dF��F con-

necting the results Eqs. �10� and �12� is treated numerically
�see below�.

In the opposite limit of a strong barrier, 
�1, both 	0 and
	F are small, if the F layer is not too thin, y�
−1. Equation
�2� then yields 	0=	F cosh ỹ, and, using the boundary con-
dition, the Usadel equation of the S layer can be rewritten as

�
 +
�



−

�

�2i
2 tanh ỹ
cos 	S	sin 	S = � cos 	S. �13�

Equation �13� yields �	S=−� / �
�0�, and thus no gap in the
density-of-states, ��0�=�0� / �
�0�, while
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�� = −
�



+

��

8
2R
�1 − i�coth ỹ� . �14�

The screening length is given as

�0
2

�eff
2 �0�

= 1 − �1 +
2

�
	 �


�0
+ ��

8
+

2

3�
	 �


2�0
R
�1

− i�coth ỹ� −
�

16
2R�4iy + �1 + i�sinh 2ỹ

sinh2 ỹ
� .

�15�

Again the effective screening length oscillates on the scale of
�F. However, these oscillations are suppressed due to the
large barrier. For y�1, the oscillatory function in the contri-
bution of the S layer has the same form as the one in Eq. �10�
whereas the oscillating part of the contribution from the F
layer is proportional to ye−2y sin�2y�.

In the case of a very thin F layer, y�
−1, the variation of
the angle 	 is small across the F layer �see above�. The
boundary condition at the SF interface then simplifies, and
the Usadel equation of the S layer yields

�
 + 2i�y + 4�
y2 cos 	S�sin 	S = � cos 	S. �16�

We find �	S=−2i�y /�0 and ��=−��
y2. As for the case
without a barrier, the density of states in the thin-film regime
is gapped. Using Eq. �16� to convert the integral over 
 to an
integral over 	S, the screening length is given by

�0
2

�eff
2 �0�

= 1 − ��1 +
16

3�2	�


�0
y2 + �y . �17�

The inverse screening length increases in the very narrow
regime dF��F

3 / �
�S
2�.

Thus, we find oscillations of the screening length both in
the absence of a barrier and in the presence of a strong bar-
rier. The amplitude of oscillations in the latter case is sup-
pressed, however. In both cases, analytic results can be found
for small-thicknesses y�y� and large-thicknesses y�y�,
where y��min�1,
−1� denotes the position of the first strong
minimum. The vicinity of this minimum is not accessible to
analytic solution.

To find a solution in this regime, we note that Eq. �2�
yields a general relation between 	0 and 	F, namely,

sin
	0

2
=

1

�1 + cot2
	F

2
cn2�ỹ,cos2	F

2
	 , �18�

where cn is the Jacobi elliptic function. Using Eq. �18�, the
boundary condition �3� yields 	S as a function of 	F. Insert-
ing this solution into the other equations, the set of coupled
Eqs. �4� and �5� can then be solved numerically. The thick-
ness dependence of the low-temperature screening length is
displayed in Fig. 1. The minimum at dF��F is clearly visible
whereas further oscillations at larger dF are very small.

Furthermore, the numeric solution allows one to describe
the temperature dependence of the screening length. Figure 2
shows the finite temperature curves for different values of
dF /�F. The oscillations of the zero-temperature screening

length mirror the oscillations of the critical temperature as
well as the slope of the screening length close to Tc.

In the vicinity of the critical-temperature Tc an analytic
solution is possible for all parameter values. For the SF bi-
layer, the critical temperature is given by the solution of the
equation1

ln
Tc

Tc0
= ��1

2
	 − R���1

2
+

1

2�Tc�s
	� , �19�

where the �complex� relaxation-time �s reads
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FIG. 1. �Color online� Oscillation of the inverse screening-
length 1 /�eff

2 as a function of dF at temperature T=0.1Tc0. Here we
use the parameters �=1.2, 
=1, and �=0.6. The inset magnifies the
weak maximum at dF�2.5�F.
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FIG. 2. �Color online� Temperature dependence of �eff
−2. The pa-

rameters used are the same as in Fig. 1, and four different thick-
nesses are shown: dF /�F=0.5, 0.9, 1.3, and 3. The corresponding
critical temperatures are Tc�0.5�=0.36Tc0, Tc�0.9�=0.17Tc0 �close
to the minimum�, Tc�1.3�=0.23Tc0, and Tc�0.5�=0.31Tc0 �close to
the asymptotic value for dF /�F�1�.
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�s
−1 =

�2i� tanh��2iy�

1 + �2i
 tanh��2iy�
. �20�

Equations �19� and �20� are obtained by linearizing �2�–�5� in
small 	 close to the transition. For �s

−1 small, Tc=Tc0

− �
4 R
�s

−1�. For ��s
−1�=�0 /2, the transition temperature van-

ishes according to Eq. �19�. Note, however, that for large �s
−1

the transition typically becomes first order.23

Expansion of Eqs. �2�–�5� up to cubic order then yields
the temperature dependence of the screening-length �eff close
to Tc. Namely,

1

�eff
2 �T�

=
�0�S

��Tc
�2�T�R��1 +

�

4�2i

2ỹ + sinh�2ỹ�

�cosh ỹ + 
̃ sinh ỹ�2	
���1��1

2
+

1

2�Tc�s
	� . �21�

We see that the contribution of the F layer to �eff
−2 displays an

oscillatory dependence on its thickness. Furthermore, both Tc
and ��T� oscillate. In particular,

�2�T�
Tc − T

=
4�Tc�1 − R
�2�Tc�s�−1��1��z���
− R
��2��z� − f��s,
,y���3��z��

, �22�

at T�Tc, where z= 1
2 + �2�Tc�s�−1 and

f��s,
,y� =
1

48
�2�Tc�s�−1 1

�1 + 
̃ tanh ỹ�3

� �4�1 + 2
̃ tanh ỹ�2 −
2ỹ + sinh�2ỹ�
sinh ỹ cosh3 ỹ

	 .

�23�

Note that the simple-relation �−2��2 does not hold in the
presence of the F layer. The slope of �eff

−2 close to Tc has its
own dependence on the thickness of the F layer and the
relaxation-rate �s

−1.
In conclusion, we have shown that the screening length of

SF bilayers displays an oscillatory dependence on the thick-
ness of the F layer. Analytic solutions have been found in
various regimes and a general solution has been determined
numerically. The obtained nonmonotonic dependence of the
screening length has been observed experimentally.17 Our
method can be easily extended to more complicated situa-
tions such as multilayers where unusual features of the prox-
imity effect have been predicted.1,2
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